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Abstract We consider a classical lattice dipole gas with low activity and show that the
pressure has a limit as the volume goes to infinity. The result is obtained by a renormalization
group analysis of the model.
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1 Introduction

1.1 Overview

We study a dipole gas on a unit lattice Z
d with d ≥ 3. The potential between unit dipoles

with moments p1,p2 ∈ S
d−1 at positions x, y ∈ Z

d is

(p1 · ∂)(p2 · ∂)C(x − y) (1)

where C(x − y) is the Coulomb potential, that is the kernel of the inverse Laplacian

C(x, y) = (−�)−1(x, y) = (2π)−d

∫
[−π,π ]d

eip(x−y)

2
∑

μ(1 − cospμ)
dp (2)

For this potential we consider the dipole gas in the grand canonical ensemble. Let �N ⊂
R

d be a box of the form

�N =
[−LN

2
,
LN

2

]d

(3)

where L is large, odd, and positive. For �N ∩ Z
d the grand canonical partition function

with activity z > 0 and (for convenience) inverse temperature β = 1 can be represented as a
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Euclidean field theory and is given by

ZN =
∫

exp
(
zW(�N,φ)

)
dμC(φ) (4)

where

W(�N,φ) = 2
∫

Sd−1
dp

∑
x∈�N ∩Zd

cos(p · ∂φ(x)) (5)

Here dp is the normalized rotation invariant measure on S
d−1. The fields φ(x) are a family

of Gaussian random variables indexed by x ∈ Z
d with mean zero and covariance given

by the positive definite function C(x, y). The measure μC is the underlying measure. To
make the connection with the dipole gas one expands the exponential in (4) and carries out
the Gaussian integrals. Similarly one can define correlation functions in terms of the field
theory.

One would like to take the thermodynamic limit for these quantities, that is the limit as
N → ∞. Actually ZN itself has no limit but there should be a limit for the pressure defined
by

pN = |�N |−1 logZN (6)

as well as for the correlation functions. Such limits have been obtained by Fröhlich and Park
[12] and by Fröhlich and Spencer [13] using a method of correlation inequalities.

In this paper we want to study the problem by a more robust method which is capable of
answering other questions about the long distance behavior of the model such as decay of
correlations. If the potential were integrable one could establish such results with a Mayer
expansion. However the long distance behavior ∂μ∂νC(x − y) = O(|x − y|−d) is not inte-
grable. Instead we use the method of the renormalization group (RG). The basic idea is to
break up the integral into a sequence of more controllable integrals and analyze the effects
separately at each stage.

We follow particularly a RG approach for low activity recently developed by Brydges and
Slade [2, 4]. A collateral benefit of this paper is to work out some details of their method in
case of the dipole gas. Earlier work on the RG approach to the dipole gas can be found in
Gawedski and Kupiainen [14], Brydges and Yau [5], Dimock and Hurd [10], and Brydges
and Keller [3].

In all these treatments the model is either defined on the torus R
d/LN

Z
d with a momen-

tum cutoff or on a toroidal lattice Z
d/LN

Z
d . One obtains bounds on the partition function

and correlation functions uniform in N . As explained above we work on Z
d with the interac-

tion confined to a finite volume �N . We essentially reproduce the basic torus results, at least
for the partition function, but then also take the N → ∞ limit. The N → ∞ limit would
be awkward for a sequence of tori because the N dependence appears in the covariance C

as well as the interaction. Furthermore for the tori there are difficulties connected with the
change in topology. The disadvantage for us is that our finite volume approximation loses
some translation invariance because of the boundary. Since translation invariance is a key
ingredient in the proof, dealing with this loss is one of the main issues.

Besides the dipole gas papers mentioned above we cite some other papers which treat
infrared problems by RG techniques. There is the work of Brydges, Dimock, and Hurd
[6, 7], Brydges, Mitter, and Scoppola [8], and Abdesselam [1] on non-Gaussian fixed points
for φ4 models, and Dimock and Hurd [11] on Sine-Gordon models in d = 2 (the Coulomb
gas), and Mitter and Scoppola [15] on self-avoiding random walks. These papers either work
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in a finite volume and get bounds uniform in the volume or else work with a formal infinite
volume limit. The hope is that the techniques of the present paper point the way to carrying
these results over to an actual infinite volume limit.

1.2 The Main Result

We now state the main result. For our renormalization group approach we use a different
finite volume approximation than (4) following the analysis of Brydges [2]. We first add a
term (1 − ε)V (�N,φ) where

V (�N,φ) = 1

4

∑
x∈�N ∩Zd

d∑
±μ=1

(∂μφ(x))2 (7)

Here ∂μφ is either the forward or backward lattice derivative along the unit basis vector eμ

defined by

∂μφ(x) =φ(x + eμ) − φ(x) (8)

where e−μ = −eμ. Then ∂μ and ∂−μ are adjoint to each other and −� = 1/2
∑

μ ∂∗
μ∂μ.1

This addition of (1 − ε)V (�N,φ) is partially compensated by replacing the covariance
C by ε−1C. Thus instead of (4) we consider

Z′
N =

∫
exp

(
zW(�N,φ) − (1 − ε)V (�N,φ)

)
dμε−1C(φ) (9)

Then divide by

Z′′
N =

∫
exp

(−(1 − ε)V (�N,φ)
)
dμε−1C(φ) (10)

and form a new finite volume partition function

ZN = Z′
N/Z′′

N (11)

Since formally (Z′′
N)−1 exp(−(1 − ε)V (�N))dμε−1C converges to dμC , so formally ZN

yields the same limit as (4). This holds for any choice of ε; the choice of ε is a choice
of how much (∂φ)2 one is putting in the measure and how much in the interaction.

The point of the adjustment is that one can make a shrewd choice of ε to facilitate the
analysis. The main result is:

Theorem 1 For |z| sufficiently small there is a ε = ε(z) close to 1 so that the pressure
pN = |�N |−1 logZN has a limit as N → ∞.

The proof will involve a demonstration that with the proper choice of ε = ε(z) the den-
sity exp(zW − (1 − ε)V ) tends to zero under the RG flow leaving a measure like με(z)−1C

to describe the long distance behavior of the system. Accordingly ε(z) is interpreted as a

1We distinguish forward and backward derivatives to facilitate a symmetric decomposition of V (�N) into
blocks.
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dielectric constant. To make this remark precise one would have to study the correlation
functions by these methods. This seems quite feasible, but we do not develop this aspect.

For the proof of the theorem it is convenient to rewrite the partition function. We first
scale φ → φ/

√
ε and then put σ = ε−1 − 1. Then we have

Z′
N(z, σ ) =

∫
exp

(
zW(�N,

√
1 + σφ) − σV (�N,φ)

)
dμC(φ)

Z′′
N(σ ) =

∫
exp

(−σV (�N,φ)
)
dμC(φ) (12)

ZN(z,σ ) = Z′
N(z, σ )/Z′′

N(σ )

Then the problem is to show that for |z| sufficiently small there is a (smooth) σ = σ(z) near
zero such that with this choice of σ

|�N |−1 logZN(z,σ (z)) = |�N |−1 logZ′
N(z, σ (z)) − |�N |−1 logZ′′

N(σ (z)) (13)

has a limit as N → ∞. The two terms are treated separately and Theorem 1 is proved by
taking ε(z) = (1 + σ(z))−1.

The paper is organized as follows. In Sect. 2 we show that the normalizing factor
|�N |−1 logZ′′

N has a limit. In Sect. 3 we give some general definitions and estimates and
define the basic RG transformation. In Sect. 4 we perform the detailed analysis of the RG
transformation isolating the leading terms. In Sect. 5 we study the flow of the renormaliza-
tion group and find the stable manifold σ = σ(z). Finally in Sect. 6 we assemble the results
and prove the limit for |�N |−1 logZ′

N .

2 The Normalizing Factor

We consider the infinite volume limit for the normalizing factor |�N |−1 logZ′′
N(σ ). This is

the problem of the infinite volume limit for a finite volume perturbation in the field strength
and may be of more general interest.

First we realize the Gaussian process as given by φ = C1/2Y where Y has identity co-
variance. Then

Z′′
N(σ ) =

∫
exp

(
−σ

2
(Y,TNY )

)
dμI (Y ) (14)

where TN is the positive operator

TN = 1

2

d∑
±μ=1

C1/2∂∗
μ1�N

∂μC1/2 (15)

and 1�N
is the characteristic function of �N .

Lemma 1 The operator TN on �2(Zd) has the properties

1. trTN = |�N |.
2. ‖TN‖ ≤ 1.



Infinite Volume Limit for the Dipole Gas 397

Proof TN is trace class since 1�N
is trace class and ∂μC1/2 is bounded. Since [∂μ,C] = 0

we have

trTN = 1

2

d∑
±μ=1

tr
(
∂∗

μ∂μC1�N

) = tr 1�N
= |�N | (16)

The bound ‖TN‖ ≤ 1 follows from

|(h,TNf )| ≤ 1

2

∑
μ

|(∂μC1/2h)(x)|2χ�(x)|(∂μC1/2f )(x)|2

≤
(

1

2

∑
μ

‖∂μC1/2h‖2

)1/2(1

2

∑
μ

‖∂μC1/2f ‖2

)1/2

= ‖h‖‖f ‖ (17)

�

Theorem 2 For real σ with |σ | < 1, |�N |−1 logZ′′
N(σ ) converges as N → ∞.

Proof Since TN is trace class and

‖f ‖2 − σ(f,TNf ) ≥ (1 − |σ |)‖f ‖2 > 0 (18)

the integral defining Z′′
N(σ ) in (14) exists and can be evaluated as

Z′′
N(σ ) = det(1 + σTN)−1/2 (19)

(See for example [17].) Furthermore since |σ |‖TN‖ ≤ |σ | < 1 we have the expansion

Z′′
N(σ ) = exp

(
1

2

∞∑
n=1

(−σ)n

n
tr(T n

N)

)
(20)

(See for example [16].) Hence

|�N |−1 logZ′′
N(σ ) = 1

2

∞∑
n=1

(−σ)n

n

tr(T n
N)

|�N | (21)

We have with the trace norm ‖ · ‖1

| tr(T n
N)| ≤ ‖T n

N‖1 ≤ ‖TN‖1‖T n−1
N ‖ ≤ ‖TN‖1 ≤ |�N | (22)

Hence the sum is dominated by
∑

n |σ |n < ∞. We show below that for each n ≥ 1

an = lim
N→∞

tr(T n
N)

|�N | (23)

exists. Then by the dominated convergence theorem we have the existence of

lim
N→∞

|�N |−1 logZ′′
N(σ ) = 1

2

∞∑
n=1

(−σ)n

n
an (24)
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Now consider the convergence (23). We write

tr(T n
N) = 2−n

∑
μ1,...,μn

tr(1�N

μ1μ2 · · · 1�N


μnμ1) (25)

where the sums are over ±μ = 1, . . . , d and


μν = ∂μC∂∗
ν (26)

We rewrite this as

tr(T n
N) =

∑
x∈�N

aN
n (x) (27)

where

aN
n (x1) = 2−n

∑
μ1,...,μn

∑
x2,...,xn∈�N


μ1μ2(x1 − x2)
μ2μ3(x2 − x3) · · ·
μnμ1(xn − x1) (28)

The quantity an is the same expression without the restriction to �N . It is independent of x1

and we can take x1 = 0. Thus it is

an = 2−n
∑

μ1,...,μn

∑
x2,...,xn


μμ2(−x2)
μ2μ3(x2 − x3) · · ·
μnμ(xn) (29)

To see that an is finite we use (see Lemma 2 to follow)

|
μν(x − y)| ≤ C(1 + |x − y|)−d (30)

then in (29) we use the estimate2

∑
y

(1 + |x − y|)−d(1 + |y|)−d+kδ ≤ Ck,δ(1 + |x|)−d+(k+1)δ (31)

valid for kδ < d . Applying this successively to xn, xn−1, . . . we are left with
∫

(1 + |x2|)−2d+(n−1)δdx2 (32)

which is finite if (n−1)δ < d . Thus an is finite. Similarly one shows that |aN
n (x)| is bounded

uniformly in N .
Now we write

|�N |−1 tr(T n
N) = an + |�N |−1

∑
x1∈�N

(aN
n (x1) − an) (33)

We show that the second term above goes to zero as N → ∞ to complete the proof.
First define a slightly smaller volume

�∗
N =

[
−LN

2
+ N,

LN

2
− N

]d

(34)

2To prove it divide the summation region into |y| ≤ |x|/2 and the complement.
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The contribution from x1 /∈ �∗
N is bounded by

|�N |−1
∑

x1∈�N −�∗
N

|aN
n (x1) − a| ≤ O(1)

|�N − �∗
N |

|�N | ≤ O(NL−N) (35)

which goes to zero.
Now suppose that x1 ∈ �∗

N . Then we have

aN
n (x1)−an = 2−n

∑
μ1,...,μn

∑
(x2,...,xn)∈((�N )n−1)c


μ1μ2(x1 −x2)
μ2μ3(x2 −x3) · · ·
μnμ1(xn−x1)

(36)
At least one variable must be in �c

N , say xk . Furthermore at least one pair of adjacent vari-
ables must satisfy |xj − xj+1| ≥ N/n. Otherwise |x1 − xk| ≤ N(k − 1)/n < N which con-
tradicts that x1 ∈ �∗

N, xk ∈ �c
N . Thus we can make the estimate

|
μj μj+1(xj − xj+1)| ≤ C(1 + |xj − xj+1|)−d ≤ C(1 + N/n)−ε(1 + |xj − xj+1|)−d+ε (37)

If ε is small enough the reduced decay does not affect convergence in (36). Thus we have

|aN
n (x1) − an| ≤ O(N−ε) (38)

Therefore

|�N |−1
∑

x1∈�∗
N

|aN
n (x1) − a| ≤ O(N−ε)

|�∗
N |

|�N | ≤ O(N−ε) (39)

which also goes to zero to complete the proof. �

3 Preliminaries

3.1 Multiscale Decomposition

Renormalization group methods are based on a multiscale decomposition of the basic lattice
covariance. We choose a decomposition into finite range covariances developed by Brydges,
Guadagni, and Mitter [9]. This is an alternative to block spin averaging and has the advan-
tage of making fluctuation integrals simpler and the fluctuation covariances smoother. The
smoothness is essential for the method.

The decomposition has the form

C(x − y) =
∞∑

j=1

�j(x − y) (40)

where �j(x) is defined on Z
d , is positive semi-definite, and satisfies �j (x) = 0 if |x| ≥ Lj/2

for some odd integer L ≥ 3. Furthermore there is a constant c0 independent of L such that

|�j (x)| ≤ c0L
−(d−2)(j−1) (41)
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for all j, x. It follows that the series converges uniformly. Let ∂α = ∏d

±μ=1 ∂
αμ
μ be a multi-

derivative and let |α| = ∑
μ |αμ|. Then there are constants cα independent of L such that

|∂α�j (x)| ≤ cαL
−(d−2+|α|)(j−1) (42)

Then the differentiated series converges uniformly to ∂αC.
An elementary consequence of this expansion is an estimate on the decay of C(x − y) as

|x − y| → ∞:

Lemma 2 There are constants CL,α such that

|∂αC(x)| ≤ CL,α(1 + |x|)−d+2−|α| (43)

Proof First consider the case with no derivatives. For |x| ≥ L/2 choose k ≥ 1 so that Lk/2 ≤
|x| ≤ Lk+1/2. If j ≤ k then �j(x) = 0 and we have

C(x) =
∞∑

j=k+1

�j (x) (44)

This is estimated by

∞∑
j=k+1

c0L
−(d−2)(j−1) ≤ 2c0L

−(d−2)k ≤ c0L|x|−(d−2) (45)

which suffices. With derivatives we get the improved decay from (42). This completes the
proof. �

For the renormalization group we break off pieces of C(x −y) one at a time. Accordingly
we define

Ck(x − y) =
∞∑

j=k+1

�j(x − y) (46)

Then C = C0 and

Ck(x − y) = Ck+1(x − y) + �k+1(x − y) (47)

3.2 RG Transformation

The partition function (12) can be written

Z′
N(z, σ ) =

∫
Z N

0 (φ)dμC0(φ) (48)

where

Z N
0 (φ) = exp

(
zW(�N,

√
1 + σφ) − σV (�N,φ)

)
(49)

The identity C0 = C1 + �1 lets us replace an integral over μC0 by an integral over μ�1 and
μC1 . We have
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Z′
N(z, σ ) =

∫
Z N

0 (φ + ζ )dμ�1(ζ )dμC1(φ)

=
∫

Z N
1 (φ)dμC1(φ) (50)

We have defined a new density by the fluctuation integral

Z N
1 (φ) = (μ�1 ∗ Z N

0 )(φ) ≡
∫

Z N
0 (φ + ζ )dμ�1(ζ ) (51)

Since �1,C1 are only positive semi-definite these are degenerate Gaussian measures.
Nevertheless these integrals are well-defined and the above manipulations are valid. We
discuss these issues in Appendix A

Continuing in this fashion we have the representation for j = 0,1,2, . . . .

Z′
N(z, σ ) =

∫
Z N

j (φ)dμCj
(φ) (52)

where the density Z N
j (φ) is defined by

Z N
j+1(φ) = (μ�j+1 ∗ Z N

j )(φ) =
∫

Z N
j (φ + ζ )dμ�j+1(ζ ) (53)

Our problem is to study the growth of these densities as j → ∞.
Note that we have refrained from scaling after each fluctuation integral which is the usual

procedure in the renormalization group. Thus the volume stays constant but correlations
weaken as we proceed.

3.3 Local Expansion

Each density Z N
j (φ) will be written in a form which exhibits its locality properties known

as a polymer representation. The localization becomes coarser as j gets larger.
For j = 0,1,2, . . . we partition Z

d into j -blocks B . These have side Lj and are translates
of

B0 = {x ∈ Z
d : |x| < 1/2(Lj − 1)} (54)

by points in the lattice Lj
Z

d . The set of all j -blocks in � = �N is denoted Bj (�) or just
Bj . A union of j -blocks X is called a j -polymer. In particular � is a j -polymer for j ≤ N .
The set of all j -polymers in � is denoted Pj (�) or just Pj . The connected j -polymers are
denoted Pj,c .

The number of j -blocks in a j -polymer X is denoted |X|j . The j -polymer X is a small
set if it is connected and |X|j ≤ 2d . The set of all small set polymers is denoted Sj (�) or
just Sj . A j -block B has a small set neighborhood

B∗ =
⋃

{Y ∈ Sj : Y ⊃ B} (55)

Similarly a j -polymer X has a small set neighborhood X∗.
The density Z N

j (φ) for φ : Z
d → R will be written in the general form

Z = (I ◦ K)(�) ≡
∑

X∈Pj (�)

I (� − X)K(X) (56)
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The I (Y ) is a background functional which is explicitly known and carries the main contri-
bution to the density. The K(X) is called a polymer activity and represents small corrections
to this background.

We assume I (Y ) has the form

I (Y ) =
∏

B∈Bj :B⊂Y

I (B) (57)

and that I (B,φ) depends on φ only B∗. We also assume K(X) factors over the connected
components C(X) of X, that is

K(X) =
∏

Y⊂C(X)

K(Y ) (58)

and that K(X,φ) only depends on φ in X∗.
All this is quite general. Special to our model is the fact that the background I (B) has

the form I (E,σ,B) = exp(−V (E,σ,B)) where3

V (E,σ,B,φ) = E(B) + 1

4

∑
x∈B

∑
μν

σμν(B)∂μφ(x)∂νφ(x) (59)

for some functions E,σμν : Bj → R. In fact we will usually be able to take σμν(B) = σδμν

for some constant σ in which case

V (E,σ,B,φ) = E(B) + σ

4

∑
x∈B

∑
μ

(∂μφ(x))2 ≡ E(B) + σV (B) (60)

Also in our model we will have

K(X,φ) =K(X,−φ)

K(X,φ) =K(X,φ + c)
(61)

The second holds for any constant c and is equivalent to saying that K(X,φ) only depends
on derivatives ∂φ.

3.4 Norms

We define a menagerie of norms following Brydges [2].

3.4.1

If X is a j -polymer we consider the Banach space �j(X) of functions φ : X → R modulo
constants with the norm

‖φ‖�j (X) = h−1
j max

{‖∇jφ‖X,∞, ‖∇2
j φ‖X,∞

}
(62)

where

‖∇jφ‖X,∞ = sup
x∈X,μ

|∇j,μφ(x)|
(63)∇j,μ = Lj∂μ hj = L−(d−2)j/2h

3Sums over μ are understood to range over ±μ = 1, . . . , d , unless otherwise specified.
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Note that if X is also a j + 1 polymer then we can consider ‖φ‖�j+1(X). Since h−1
j =

L−(d−2)/2h−1
j+1 and ∇j = L−1∇j+1 we have the contractive property

‖φ‖�j (X) ≤ L−d/2‖φ‖�j+1(X) (64)

3.4.2

Now consider polymer activities K(X,φ) for X ∈ Pj . We assume that K(X,φ) only de-
pends on φ in X∗ and is a C 3 function on �j(X

∗).

1. For n = 0,1,2,3 let Kn(X,φ) be the nth derivative with respect to φ. It is a multi-linear
functional on fi ∈ �j(X

∗) given by

Kn(X,φ;f1, . . . , fn) = ∂n

∂t1 . . . ∂tn
K(X,φ + t1f1 + · · · + tnfn)

∣∣
ti=0

(65)

We define

‖Kn(X,φ)‖j = sup{|Kn(X,φ;f1, . . . , fn)| : ‖fj‖�j (X∗) ≤ 1} (66)

2. Next define

‖K(X,φ)‖j =
3∑

n=0

1

n! ‖Kn(X,φ)‖j (67)

This combination of derivatives has the multiplicative property

‖K(X,φ)H(Y,φ)‖j ≤ ‖K(X,φ)‖j‖H(Y,φ)‖j (68)

3. Next we pick a large field regulator Gj(X,φ′, ζ ) which depends on φ′, ζ in X∗.
It is assumed to have the form Gj(X,φ′, ζ ) = Gj(X,φ′,0)Gj (X,0, ζ ) and satisfy
Gj(X,φ′, ζ ) ≥ 1 and Gj(X,0,0) = 1. A polymer activity K(X,φ) is regarded as a func-
tion K(X,φ′ + ζ ) of φ′, ζ and we define a norm

‖K(X)‖j = sup
φ′,ζ

‖Kn(X,φ′ + ζ )‖jGj (X,φ′, ζ )−1 (69)

Sometimes we want to consider the same norm but with the polymer activity as a function
of φ′ only. In this case we put a prime on the norm and define

‖K(X)‖′
j = sup

φ′,ζ
‖Kn(X,φ′)‖jGj (X,φ′, ζ )−1

= sup
φ′

‖Kn(X,φ′)‖jGj (X,φ′,0)−1 (70)

For large field regulators there are two choices. The strong regulator is

Gs,j (X,φ′, ζ ) =
∏

B∈Bj (X)

exp
(‖φ′‖2

�j (B∗) + ‖ζ‖2
�j (B∗)

)
(71)

The weak regulator is
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Gj(X,φ′, ζ ) =
∏

B∈Bj (X)

exp
(
c1h

−2
j L−dj‖∇jφ

′‖2
B,2 + c2h

−2
j ‖∇2

j φ
′‖2

B∗,∞
)

× exp
(
c3h

−2
j L−(d−1)j‖∇jφ

′‖2
∂X,2

)

×
∏

B∈Bj (X)

exp
(
c4h

−2
j max

0≤p≤2
‖∇p

j ζ‖2
B∗,∞

)
(72)

(Note that h−2
j L−dj‖∇jφ

′‖2
B,2 = h−2‖∂φ′‖2

B,2 actually has no explicit j -dependence.
Nevertheless it is convenient to write it in this fashion.) The norm with strong regulator
is denoted ‖K(X)‖s,j , and the norm with the weak regulator is denoted just ‖K(X)‖j .
We note also ([2], (6.100)) that

Gs,j (X) ≤ Gs,j (X)2 ≤ Gj(X) (73)

and hence

‖K(X)‖j ≤ ‖K(X)‖s,j (74)

4. Finally for the weak norm we define for A ≥ 1

‖K‖j = sup
X∈Pj,c

‖K(X)‖jA
|X|j (75)

where the supremum is over connected j -polymers X. Polymer activities K(X,φ) de-
fined on connected j -polymers X ⊂ �N with this norm constitute a Banach space de-
noted Kj (�N).

3.4.3

The norms are defined to satisfy the following properties which hold for suitable choices
of c1, c2, c3, c4, L sufficiently large, and h sufficiently large depending on L. For the proofs
see [2].

• If C(X) are the connected components of X then

‖K(X)‖j ≤
∏

Y∈C(X)

‖K(Y)‖j (76)

• If X,Y are disjoint (but possibly touching)

∥∥∥∥
(∏

B⊂X

F(B)

)
K(Y)

∥∥∥∥
j

≤
∏
B⊂X

‖F(B)‖s,j‖K(Y)‖j (77)

• If

K#(X,φ) =
∫

K(X,φ, ζ )dμ�j+1(ζ ) (78)

then

‖K#(X)‖′
j ≤ 2|X|j ‖K(X)‖j ≤ (A/2)−|X|j ‖K‖j (79)
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• Suppose that U is a (j + 1)-polymer and hence a j -polymer. Then

‖K(U)‖j+1 ≤ ‖K(U)‖′
j (80)

also for the strong norm.

3.5 Estimates

We illustrate the use of these norms with some estimates we will need. We work in somewhat
more generality than we need by introducing potentials of the form

V (s,B,φ) = 1

4

∑
x∈B

∑
μν

sμν(x)∂μφ(x)∂νφ(x) (81)

The functions sμν(x) are normed by

‖s‖j = sup
B∈Bj

|B|−1‖s‖1,B = sup
B∈Bj

L−dj
∑
μν

∑
x∈B

|sμν(x)| (82)

Note that if sμν(x) = σδμν then V (s,B) = σV (B) as defined in (60) and the norm is ‖s‖j =
2dσ .

Lemma 3

1. For any sμν(x)

‖V (s,B)‖′
s,j ≤ h2‖s‖j ‖V (s,B)‖s,j ≤ h2‖s‖j (83)

2. The function σ → exp(−σV (B)) is complex analytic and if h2σ is sufficiently small

‖e−σV (B)‖′
s,j ≤ 2 ‖e−σV (B)‖s,j ≤ 2 (84)

Proof Start with the estimate for x ∈ B

|∂μφ(x)| = L−j |∇j,μφ(x)| ≤ hjL
−j‖φ‖�j (B∗) = hL−dj/2‖φ‖�j (B∗) (85)

The first derivative is [∂μφ(x)]1(f ) = ∂μf (x) and it satisfies |[∂μφ(x)]1(f )| ≤
hL−dj/2‖f ‖�j (B∗). Hence

‖[∂μφ(x)]1‖j ≤ hL−dj/2 (86)

Adding the derivatives

‖∂μφ(x)‖j ≤ hL−dj/2
(
1 + ‖φ‖�j (B∗)

)
(87)

Now we estimate

‖V (s,B,φ)‖j ≤ 1

4

∑
μν

∑
x∈B

|sμν(x)|h2L−dj
(
1 + ‖φ‖�j (B∗)

)2

≤ 1

2
h2‖s‖j

(
1 + ‖φ‖2

�j (B∗)

)

≤ 1

2
h2‖s‖jGs,j (B,φ,0) (88)
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which gives ‖V (s,B)‖′
s,j ≤ 1

2h2‖s‖j . Similarly

‖V (s,B,φ′ + ζ )‖j ≤ 1

2
h2‖s‖j (1 + ‖φ′ + ζ‖2

�j (B∗))

≤ h2‖s‖j (1 + ‖φ′‖2
�j (B∗) + ‖ζ‖2

�j (B∗))

≤ h2‖s‖jGs,j (B,φ′, ζ ) (89)

which gives ‖V (s,B)‖s,j ≤ h2‖s‖j .
For the exponential estimates one can compute the derivatives, estimate, and resume (see

[6] for details). Using also (88) yields

3n

n! ‖(e
−σV (B,φ))n‖j ≤ exp

(∑
n

3n

n! |σ |‖Vn(B,φ)‖j

)

≤ exp(9|σ |‖V (B,φ)‖j )

≤ exp
(
9dh2|σ |(1 + ‖φ‖2

�j (B∗))
)

= exp
(
9dh2|σ |) Gs,j (B,φ,0) (90)

Now multiply by 3−n and sum over n to obtain for 3/2 exp(9dh2|σ |) ≤ 2

‖e−σV (B,φ)‖s,j ≤ 2 Gs,j (B,φ,0) (91)

which implies ‖e−σV (B)‖′
s,j ≤ 2. The bound ‖e−σV (B)‖s,j ≤ 2 follows similarly. This com-

pletes the proof. �

We also need an estimate on the initial interaction. In this case B ∈ B0 is single site x and
we consider

W(u,B,φ) = 2
∫

Sd−1
dp cos(p · ∂φ(x)u) (92)

Lemma 4

1. W(u,B) satisfies

‖W(u,B)‖s,0 ≤ 2e
√

dhu (93)

W(u,B) is strongly continuously differentiable in u.
2. ezW(u,B) is complex analytic in z and satisfies for |z| is sufficiently small (depending on

d,h,u)

‖ezW(u,B)‖s,0 ≤ 2 (94)

ezW(u,B) is strongly continuously differentiable in u.

Proof 1. A calculation using
∑

μ |pμ| ≤ √
d gives ‖[cos(p · ∂φ(x)u)]n‖0 ≤ (

√
dhu)n and

so

‖W(u,B,φ)‖0 ≤ 2 sup
p

‖ cos(p · ∂φ(x)u)‖0 ≤ 2e
√

dhu (95)

This gives the required ‖W(u,B)‖s,0 ≤ 2e
√

dhu.
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We first compute the pointwise derivative in u which is

W ′(u,B,φ) = −2
∫

Sd−1
dp sin

(
p · ∂φ(x)u

)(
p · ∂φ(x)

)
(96)

Then by (87) at j = 0 and (95) with sine instead of cosine

‖W ′(u,B,φ)‖0 ≤ 2e
√

dhuh
(
1 + ‖φ‖�0(B∗)

)
(97)

and hence

‖W ′(u,B)‖s,0 ≤ 4he
√

dhu (98)

Higher derivatives are treated similarly. In particular for the second derivative

‖W ′′(u,B)‖s,0 ≤ 8h2e
√

dhu (99)

To see that the pointwise derivative is also the strong derivative we write

W(u + δ,B) − W(u,B) − δ W ′(u,B) =
∫ δ

0
dt

∫ u+t

u

W ′′(s,B)ds (100)

Inserting the bound on W ′′ the norm of the expression is O(δ2) which gives the result. The
strong continuity of W ′ also follows from the bound on W ′′.

2. For the exponential bound instead of the norm ‖ · ‖0 with G0 it suffices to use the
G = 1 norm

‖W(B)‖00 = sup
φ

‖W(B,φ)‖0 = sup
φ′,ζ

‖W(B,φ′ + ζ )‖0 (101)

This is a stronger norm in the sense that ‖W(B)‖s,0 ≤ ‖W(B)‖00. We still have
‖W(u,B)‖00 ≤ 2e

√
dhu from (95). The new norm is multiplicative and so

‖ezW(u,B)‖00 ≤
∞∑

n=0

|z|n
n! ‖W(u,B)‖n

00 ≤
∞∑

n=0

(2|z|e
√

dhu)n

n! = exp
(

2|z|e
√

dhu
)

(102)

This implies the same result for ‖ezW(u,B)‖s,0.
The pointwise derivative in u is (ezW(u))′ = zW ′(u)ezW(u) and so

‖(ezW(u,B))′‖s,0 ≤ |z|‖W ′(u,B)‖s,0‖ezW(u,B)‖00 (103)

which we bound by (98) and (102). There is a similar bound on the second derivative which
we use as before to show that the pointwise derivative is a strong derivative. �

4 Analysis of the RG Transformation

4.1

We now explain the Brydges-Slade RG analysis, at the same time noting the modifications
due to boundary effects.
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Suppose we have Z(φ) = (I ◦ K)(�,φ) with polymers on scale j . This is transformed
to

Z ′(φ′) = (μ�j+1 ∗ Z)(φ′) ≡
∫

Z(φ′ + ζ )dμ�j+1(ζ ) (104)

which we seek to write in the form Z ′(φ′) = (I ′ ◦ K ′)(�,φ′) where the polymers are now
on scale j + 1.

Further suppose we have picked I ′ and we seek K ′ so the identity holds. Our choice of
I ′ is taken to have the form

I ′(B ′, φ′) =
∏

B∈Bj ,B⊂B ′
Ĩ (B,φ′) B ′ ∈ Bj+1 (105)

We define

δI (B,φ′, ζ ) = I (B,φ′ + ζ ) − Ĩ (B,φ′) (106)

We also define K̃ = K ◦ δI , more precisely

K̃(X,φ′, ζ ) =
∑
Y⊂X

K(Y,φ′ + ζ )δIX−Y (φ′, ζ ) (107)

For connected X we write

K̃(X,φ′, ζ ) =
∑
B⊂X

J (B,X,φ′) + Ǩ(X,φ′, ζ ) (108)

The quantities J (B,X) will eventually be chosen to depend on K and to isolate the most
important part of K for cancellation. For now J (B,X) are free but we require J (B,X) = 0
unless X ∈ Sj ,B ⊂ X and that J (B,X,φ′) depend on φ′ only in B∗. Given K and J (108)
defines Ǩ(X) for X connected and for any X ∈ Pj we define

Ǩ(X,φ′, ζ ) =
∏

Y∈C(X)

Ǩ(Y,φ′, ζ ) (109)

Then after using the finite range property and making some rearrangements the represen-
tation Z ′(φ) = (I ′ ◦ K ′)(�,φ) holds with (Brydges [2], Proposition 5.1)

K ′(U,φ′) =
∑

X,χ→U

J χ(φ′)Ĩ U−(Xχ ∪X)(φ′)Ǩ#(X,φ′) U ∈ Pj+1 (110)

Here χ = (B1,X1, . . . ,Bn,Xn) and the condition X,χ → U is that X1, . . . ,Xn,X be
strictly disjoint and satisfy (B∗

1 ∪ · · · ∪ B∗
n ∪ X) = U . Furthermore

J χ(φ′) =
n∏

i=1

J (Bi,Xi,φ
′)

(111)
Ĩ U−(Xχ ∪X)(φ′) =

∏
B∈U−(Xχ ∪X)

Ĩ (B,φ′)

where Xχ = ⋃
i Xi . Finally Ǩ#(X,φ′) is Ǩ(X,φ′, ζ ) integrated over ζ as in (78).
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At this point we have K ′ as a function of I, Ĩ , J,K . It vanishes at the point (I, Ĩ , J,K) =
(1,1,0,0) since for U �= ∅ we cannot have both χ = ∅ and X = ∅. We are interested in the
behavior in a neighborhood of this point. We have the norm (75) on K and we also define

‖I‖s,j = sup
B∈Bj

‖I (B)‖s,j

‖Ĩ‖′
s,j = sup

B∈Bj

‖Ĩ (B)‖′
s,j (112)

‖J‖′
j = sup

X∈Sj ,B⊂X

‖J (X,B)‖′
j

Then we have the following uniform smoothness result.

Theorem 3 Let A be sufficiently large.

1. For R > 0 there is a r > 0 such that the following holds for all j . If ‖I − 1‖s,j < r ,
‖Ĩ − 1‖′

s,j < r , ‖J‖′
j < r and ‖K‖j < r then ‖K ′‖j+1 < R. Furthermore K ′ is a smooth

function of I, Ĩ , J,K on this domain with derivatives bounded uniformly in j .
2. If also ∑

X∈Sj :X⊃B

J (B,X) = 0 (113)

then the linearization of K ′ = K ′(I, Ĩ , J,K) at (I, Ĩ , J,K) = (1,1,0,0) is

∑
X∈Pj,c,X=U

(
K#(X) + (I #(X) − 1)1X∈Bj

− (Ĩ (X) − 1)1X∈Bj
−

∑
B⊂X

J (B,X)

)
(114)

where

K#(X,φ) =
∫

K(X,φ + ζ )dμ�j+1(ζ ) (115)

Proof Brydges [2], Propositions 5.3 and 6.4. The proof uses the properties (76)–(80). For
the bounds on derivatives one can establish analyticity and use Cauchy bounds.

For the linearization the condition on J insures that there is no contribution from J χ .
There is no contribution from Ĩ U−(Xχ ∪X) since χ = ∅,X = ∅ is not allowed. The only con-
tribution is from Ǩ#(X) and it has the form stated. �

4.2

Now we make some further specializations. First for a smooth function f (φ) on φ ∈ R
� let

T2f denote a second order Taylor expansion:

(T2f )(φ) = f (0) + f1(0;φ) + 1

2
f2(0;φ,φ) (116)

With K# defined in (115) we now define for X ∈ Sj , X ⊃ B , X �= B:

J (B,X) = 1

|X|j T2K
#(X) (117)
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and J (B,B) so (113) is satisfied. Otherwise J (B,X) = 0.
We also specify as in (60) that

I (B) = I (E,σ,B) = exp(−V (E,σ,B)) (118)

and narrow the choice of Ĩ by requiring it to have the same form

Ĩ (B) = I (Ẽ, σ̃ ,B) = exp(−V (Ẽ, σ̃ ,B)) (119)

with Ẽ, σ̃ still to be specified. Note that since
∑

B⊂B ′ V (B) = V (B ′) we have that I ′(B ′) =
I (E′, σ ′,B ′) = exp(−V (E′, σ ′,B)) where

E′(B ′) =
∑
B⊂B ′

Ẽ(B) σ ′ = σ̃ (120)

Now we have a map K ′ = K ′(Ẽ, σ̃ ,E,σ,K). As a norm on the energy we take

‖E‖j = sup
B∈Bj

|E(B)| (121)

Then the theorem becomes:

Theorem 4 Let A be sufficiently large.

1. For R > 0 there is a r > 0 such that the following holds for all j . If ‖Ẽ‖j , |σ̃ |,‖E‖j , |σ |,
‖K‖j < r then ‖K ′‖j+1 < R. Furthermore K ′ is a smooth function of Ẽ, σ̃ ,E,σ,K on
this domain with derivatives bounded uniformly in j .

2. The linearization of K ′ at the origin has the form

L1K + L2K + L3(E,σ, Ẽ, σ̃ ,K) (122)

where

L1K(U) =
∑

X∈Pj,c,X/∈Sj ,X=U

K#(X)

L2K(U) =
∑

X∈Sj ,X=U

(I − T2)K
#(X) (123)

L3(E,σ, Ẽ, σ̃ ,K)(U) =
∑
B̄=U

(
V (Ẽ, σ̃ ,B) − V #(E,σ,B) +

∑
X∈Sj ,X⊃B

1

|X|j T2K
#(X)

)

Proof The new map is the composition of the map K ′ = K ′(I, Ĩ , J,K) of Theorem 3 with
the maps I = I (E,σ ), Ĩ = I (Ẽ, σ̃ ), J = J (K). Thus it suffices to establish uniform bounds
and smoothness for the latter.

For I = I (E,σ ) argue as follows. First we note that by (84) there is a constant
c such that the function σ → exp(−σV (B)) is analytic in |σ | ≤ ch−2 and satisfies
‖ exp(−σV (B))‖s,j ≤ 2 on that domain. Now if |σ | ≤ ch−2/2 we can write

e−σV (B) − 1 = 1

2πi

∫
|z|=ch−2

σe−zV (B)

z(z − σ)
dz (124)
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and estimate

‖e−σV (B) − 1‖s,j ≤ 2|σ |
ch−2 − |σ | ≤ 4c−1h2|σ | (125)

Hence

‖I (E,σ,B) − 1‖s,j ≤ |e−E(B) − 1|‖e−σV (B)‖s,j + ‖e−σV (B) − 1‖s,j

≤ 2‖E‖j e
‖E‖j + 4c−1h2|σ | (126)

and the same bound holds for ‖I (E,σ ) − 1‖s,j . Therefore for any ε > 0 there is a δ > 0
such that if ‖E‖j < δ and |σ | < δ then ‖I (E,σ ) − 1‖s,j < ε for all j . The uniform bounds
on derivatives can be verified similarly.

In the same way we show that ‖I (Ẽ, σ̃ ) − 1‖′
s,j can be made uniformly small by bounds

on ‖Ẽ‖j and |σ̃ | with uniform bounds on derivatives.
For the linear map K → J we first estimate ‖T2K

#(X)‖′
j . As in the proof of Lemma 3

we find that for n = 0,1,2

1

n! ‖(T2K
#(X))n(φ

′)‖j ≤ 2‖K#(X)‖jGs,j (X,φ′,0) (127)

Summing over n we get a similar bound for ‖T2K
#(X,φ′)‖j . Then by (73)

‖T2K
#(X)‖′

j ≤ O(1)‖K#(X)‖′
j (128)

By (79) this is bounded by O(1)‖K‖j . Then for X �= B we have ‖J (X,B)‖′
j ≤

‖T2K
#(X)‖′

j ≤ O(1)‖K‖j . The same bound holds for ‖J (B,B)‖′
j and hence ‖J‖′

j ≤
O(1)‖K‖j which suffices.

The linearization is a computation. Indeed J (B,X) is designed so that

∑
X∈Sj ,X=U

(
K#(X) −

∑
B⊂X

J (B,X)

)

=
∑
B=U

∑
X∈Sj ,X⊃B

1

|X|j T2K
#(X) +

∑
X∈Sj ,X=U

(I − T2)K
#(X) (129)

which accounts for the presence of these terms. Also the linearization of (I #(B) − 1) is
−V #(E,σ,B), and so forth. This completes the proof. �

Next we make some estimates on the linearization.

Lemma 5 Let A be sufficiently large depending on L. Then the operator L1 is a contraction
with a norm which goes to zero as A → ∞.

Proof We estimate by (79), (80)

‖L1K(U)‖j+1 ≤ ‖L1K(U)‖′
j ≤

∑
X/∈Sj ,X=U

‖K#(X)‖′
j ≤

∑
X/∈Sj ,X=U

(A/2)−|X|j ‖K‖j (130)
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Multiply by A|U |j+1 and take the supremum over U . This yields

‖L1K‖j+1 ≤
[

sup
U

A|U |j+1
∑

X/∈S,X=U

(A/2)−|X|j
]
‖K‖j (131)

The bracketed expression goes to zero as A → ∞ (Brydges [2], Lemma 6.18). Thus for
A sufficiently large it is arbitrarily small. The idea is that for large polymers X such that
X̄ = U the quantity |X|j must dominate |U |j+1. �

Lemma 6 Let L be sufficiently large. Then the operator L2 is a contraction with a norm
which goes to zero as L → ∞.

Proof This is exactly Brydges [2], Proposition 6.11, but to account for some differ-
ences in notation and for completeness we include some details. Write L2K(U) =∑

X∈Sj ,X=U RX(U) where RX(U) = (I − T2)K
#(X). We have ([2], (6.40))

‖RX(U,φ)‖j+1 ≤ (
1 + ‖φ‖3

�j+1(X∗)

)‖K#
3 (X,φ)‖j+1 (132)

and by (64)

‖K#
3 (X,φ)‖j+1 ≤ L−3d/2‖K#

3 (X,φ)‖j

≤ 3!L−3d/2‖K#(X,φ)‖j ≤ 3!L−3d/2‖K#(X)‖′
jGj (X,φ′,0) (133)

and for φ = φ′ + ζ ([2], (6.58))

(
1 + ‖φ‖3

�j+1(X∗)

)
Gj(X,φ,0) ≤ O(1)Gj+1(X̄,φ′, ζ ) (134)

Combining these yields

‖RX(U,φ)‖j+1 ≤ O(L−3d/2)‖K#(X)‖′
jGj+1(X̄,φ′, ζ ) (135)

and hence using also (79)

‖RX(U)‖j+1 ≤ O(L−3d/2)‖K#(X)‖′
j ≤ O(L−3d/2)(A/2)−|X|j ‖K‖j (136)

Therefore

‖L2K(U)‖j+1 ≤
∑

X∈Sj ,X̄=U

‖RX(U)‖j+1 ≤ O(L−3d/2)
∑

X∈Sj ,X̄=U

(A/2)−|X|j ‖K‖j (137)

and so

‖L2K‖j+1 ≤ O(L−3d/2)

[
sup
U

A|U |j+1
∑

X∈Sj ,X̄=U

(A/2)−|X|j
]
‖K‖j (138)

But the bracketed expression is O(Ld) ([2], (6.90)) so we have ‖L2K‖j+1 ≤ O(L−d/2)‖K‖j

to complete the proof. �
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4.3

The term L3 needs a more extensive treatment. First we localize the final term in L3 which
is

∑
B=U

∑
X∈Sj ,X⊃B

1

|X|j
(

K#(X,0) + 1

2
K#

2 (X,0;φ,φ)

)
(139)

In K#
2 (X,0;φ,φ) pick a point z ∈ B replace φ(x) by

φ(z) + 1

2
(x − z) · ∂φ(z) ≡ φ(z) + 1

2

∑
μ

(xμ − zμ)∂μφ(z) (140)

with the thought that the difference is irrelevant.4 However φ(z) and z · ∂φ(z) are constants
and do not contribute. Thus we replace φ(x) by 1

2 x · ∂φ(z). If we also average over z ∈ B

our expression becomes

∑
B=U

∑
X⊃B

1

|X|j
(

K#(X,0) + 1

8|B|
∑
z∈B

∑
μν

K#
2 (X,0;xμ, xν)∂μφ(z)∂νφ(z)

)
+ L′

3K(U)

(141)
where L′

3K(U) is the error, namely

L′
3K(U) =

∑
B̄=U

∑
X∈Sj :X⊃B

1

|X|j
∑
z∈B

1

|B|
(

1

2
K#

2 (X,0;φ,φ)− 1

8
K#

2 (X,0;x ·∂φ(z), x ·∂φ(z))

)

(142)
Next we define

β(B) = β(K,B) = −
∑

X∈Sj ,X⊃B

1

|X|j K#(X,0)

(143)
αμν(B) = αμν(K,B) = −1

2

1

|B|
∑

X∈Sj ,X⊃B

1

|X|j K#
2 (X,0;xμ, xν)

Note that αμν is symmetric and satisfies α−μν = −αμν . We also let αμν stand for the function
αμν(x) which takes the constant value αμν(B) for x ∈ B .

Now we write (141) as

−
∑
B=U

(
β(B) + 1

4

∑
z∈B

∑
μν

αμν(B)∂μφ(z)∂νφ(z)

)
+ L′

3K(U)

= −
∑
B=U

V (β,α,B,φ) + L′
3K(U) (144)

with V (β,α,B,φ) defined as in (59). Altogether then we have

L3(E,σ, Ẽ, σ̃ ,K)(U) =
∑
B=U

(
V (Ẽ, σ̃ ,B) − V #(E,σ,B) − V (β,α,B)

) + L′
3K(U) (145)

4We need the factor 1/2 since the sum is over ±μ = 1, . . . , d . The convention is that x−μ = −xμ .
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Lemma 7

‖β‖j ≡ sup
B∈Bj

|β(B)| ≤ O(1)A−1‖K‖j

(146)
‖α‖j ≡ sup

B∈Bj

∑
μν

|αμν(B)| ≤ O(1)h−2A−1‖K‖j

Remark Note that the norm ‖α‖j agrees with the norm ‖s‖j in (82) if sμν(x) = αμν(B) for
x ∈ B .

Proof By (79) we have

|K#(X,0)| ≤ ‖K#(X)‖′
j ≤ (A/2)−1‖K‖j

(147)‖K#
2 (X,0)‖j ≤ 2‖K#(X)‖′

j ≤ A−1‖K‖j

Since the number of small sets containing a block B is bounded by a constant depending
only on the dimension we have

|β(B)| ≤
∑

X∈Sj ,X⊃B

|K#(X,0)| ≤ O(1)A−1‖K‖j (148)

For the bound on α note that ‖xμ‖�j (X∗) = h−1Ldj/2. Then since |B|−1 = L−dj

|B|−1|K#
2 (X,0;xμ, xν)| ≤ h−2‖K#

2 (X,0)‖j ≤ h−2A−1‖K‖j (149)

whence
∑
μν

|αμν(B)| ≤
∑
μν

∑
X∈Sj ,X⊃B

|B|−1|K#
2 (X,0;xμ, xν)| ≤ O(1)h−2A−1‖K‖j (150)

which gives the result. �

Lemma 8 Let L be sufficiently large. Then the operator L′
3 is a contraction with arbitrarily

small norm.

Proof We have

L′
3K(U) =

∑
B̄=U

∑
X∈Sj :X⊃B

1

|X|j
∑
z∈B

1

|B|
(

1

2
K#

2

(
X,0;φ − 1

2
x · ∂φ(z),φ

))
+ similar

(151)
Since ∂−μφ(x) = −∂μφ(x − eμ) we have

∂

∂xμ

(
φ(x) − 1

2

∑
ν

xν∂νφ(z)

)
= ∂μφ(x) − 1

2
∂μφ(z) − 1

2
∂μφ(z − eμ) (152)

The same holds with ∂μ replaced by ∇j,μ and then with diamj (X
∗) = L−j diam(X∗)

∥∥∥∥∇j

(
φ − 1

2
x · ∂φ(z)

)∥∥∥∥
X∗,∞

≤ diamj (X
∗)‖∇2

j φ‖X∗,∞ (153)
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But diamj (X
∗) ≤ O(1) since X is a small set. Hence

∥∥∥∥φ − 1

2
x · ∂φ(z)

∥∥∥∥
�j (X∗)

≤ O(1)h−1
j ‖∇2

j φ‖X∗,∞

≤ O(L−d/2−1)h−1
j+1‖∇2

j+1φ‖X∗,∞

≤ O(L−d/2−1)‖φ‖�j+1(X∗) (154)

Now we estimate

HX(U,φ) = K#
2

(
X,0;φ − 1

2
x · ∂φ(z),φ

)
(155)

We claim that

|(HX(U))0(φ)| ≤ O(L−d−1)‖K#
2 (X,0)‖j‖φ‖2

�j+1(U∗)

‖(HX(U))1(φ)‖j+1 ≤ O(L−d−1)‖K#
2 (X,0)‖j‖φ‖�j+1(U∗) (156)

‖(HX(U))2(φ)‖j+1 ≤ O(L−d−1)‖K#
2 (X,0)‖j

For example the second bound follows from (64) and (154) by

|(HX(U))1(φ;f )|

=
∣∣∣∣K#

2

(
X,0;φ − 1

2
x · ∂φ(z), f

)
+ K#

2

(
X,0;f − 1

2
x · ∂f (z),φ

)∣∣∣∣

≤ ‖K#
2 (X,0)‖j

(∥∥∥∥φ − 1

2
x · ∂φ(z)

∥∥∥∥
�j (X∗)

‖f ‖�j (X∗)

+
∥∥∥∥f − 1

2
x · ∂f (z)

∥∥∥∥
�j (X∗)

‖φ‖�j (X∗)

)

≤ O(L−d−1)‖K#
2 (X,0)‖j‖φ‖�j+1(X∗)‖f ‖�j+1(X∗) (157)

To complete the bound we need ‖f ‖�j+1(X∗) ≤ ‖f ‖�j+1(U∗) which holds provided X∗ ⊂ U ∗.
Here X∗ is an Sj neighborhood of X ∈ Sj and U ∗ is an Sj+1 neighborhood of U ∈ Bj+1.

To see that X∗ ⊂ U ∗ note first that X∗ ∩ U �= ∅ since both contain B . Suppose X∗ ⊂ U ∗
is false. Since points not in U ∗ are separated from points in U by at least Lj+1 we have
diam(X∗) ≥ Lj+1. On the other hand diam(X) ≤ O(1)Lj so diam(X∗) ≤ O(1)Lj . This is a
contradiction for L sufficiently large.

Combining these estimates (156) we get

‖HX(U,φ)‖j+1 ≤ O(L−d−1)‖K#
2 (X,0)‖j (1 + ‖φ‖2

�j+1(U∗)) (158)

But for φ = φ′ + ζ

(1 + ‖φ‖2
�j+1(U∗)) ≤ Gs,j+1(U,φ,0) ≤ Gs,j+1(U,φ′, ζ ) ≤ Gj+1(U,φ′, ζ ) (159)

Using also (147) we obtain

‖HX(U)‖j+1 ≤ O(L−d−1)A−1‖K‖j (160)
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which implies

‖L′
3K(U)‖j+1 ≤ O(1)

∑
B̄=U

‖HX(U)‖j+1 ≤ O(L−1)A−1‖K‖j (161)

Since L′
3K(U) is zero unless |U |j+1 = 1 this gives ‖L′

3K‖j+1 ≤ O(L−1)‖K‖j which com-
pletes the proof. �

4.4

Now consider the first term in (145). We would like to choose Ẽ, σ̃ so it vanishes but are
not quite there yet.

To proceed we add another hypothesis. We assume that E(B),K(X,φ) are invariant
under lattice symmetries for B,X away from the boundary of �N , that is if B,X have no
boundary blocks. More precisely E(B) is independent of B , and if g is a translation, rotation
by a multiple of π/2, or a reflection and (gφ)(x) = φ(g−1x) then K(gX,gφ) = K(X,φ)

provided X,gX are away from the boundary.
These properties carry over to the next level and to the quantities β(B),αμν(B).

Lemma 9 Suppose E(B),K(X,φ) are invariant under lattice symmetries away from the
boundary of �N and Ẽ(B) is invariant for B∗ away from the boundary. Then

1. E′(B ′),K ′(U,φ) are invariant for B ′,U away from the boundary
2. If B∗ is away from the boundary then β(B),αμν(B) are independent of B and αμν(B) =

α̂μν(B) defined for all B by

α̂μν(B) = α

2
(δμν − δμ,−ν) (162)

where α is a constant.

Proof If B ′ ∈ Bj+1 is separated from the boundary then d(B ′, ∂�N) ≥ Lj+1. If B ⊂ B ′
then d(B∗, ∂�N) ≥ Lj+1 − 2d ≥ Lj so B∗ is away from the boundary. Thus in E′(B ′) =∑

B⊂B ′ Ẽ(B) each Ẽ(B) is invariant and hence so is E′(B ′).
Under our hypotheses K̃(X) defined with (118), (119) is invariant for X∗ away from the

boundary, and using the invariance of �j the quantity J (B,X) defined by (117) is invariant
for B∗ away from the boundary. Thus Ǩ(X) is invariant for X∗ away from the boundary and
so is Ǩ#(X). Now in the definition (110) of K ′(U) the quantity Ǩ#(X) only contributes for
X ⊂ U . Then U away from the boundary implies X∗ away from the boundary, so only invari-
ant terms Ǩ#(X) contribute. Similarly only invariant terms contribute to J χ and Ĩ U−(Xχ ∪X).
Hence K ′(U) is invariant.

The quantities β(B),αμν(B) depend on K(X) for X ⊂ B∗ so if B∗ is away from the
boundary they are invariant and in particular independent of B . Furthermore under the same
condition if R is a rotation or a reflection we have for μ,ν > 0

αμν(B) =
∑

μ′ν′>0

Rμμ′ Rνν′ αμ′ν′(B) (163)

To establish the identity αμν(B) = α̂μν(B) note that since both are symmetric and satisfy
α−μν(B) = −αμν(B) it suffices to establish the identity for μ,ν > 0 in which case it says
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αμν(B) = αδμν/2. Specializing (163) to reflections through planes xμ = 0 we deduce that
αμν(B) equals zero unless μ = ν so αμν(B) = αμδμν/2. Specializing (163) to rotations we
deduce that αμ is independent of μ and obtain the result. This completes the proof. �

We also define for all B ∈ Bj

α′
μν(B) = α δμν (164)

and write for any U ∈ Bj+1

∑
B=U

V (β,α,B) =
∑
B=U

V (β,α′,B) − L4K(U) − �K(U) (165)

where for U ⊂ Bj+1

L4K(U) =
∑
B=U

V (0, α′ − α̂,B) = V (0, α′ − α̂,U)

(166)
�K(U) =

∑
B=U

V (0, α̂ − α,B) = V (0, α̃,U)

where α̃μν(x) = α̂μν(B) − αμν(B) if x ∈ B . Note that �K(U) vanishes unless U touches
the boundary. Now (145) becomes

L3(E,σ, Ẽ, σ̃ ,K)(U) =
∑
B=U

(
V (Ẽ, σ̃ ,B) − V #(E,σ,B) − V (β,α′,B)

)

+ L′
3K(U) + L4K(U) + �K(U) (167)

Lemma 10 Let L be sufficiently large. Then the operator L4 is a contraction with arbitrarily
small norm.

Proof For U ∈ Bj+1

L4K(U) = α

8

∑
μ

∑
x∈U

∂μφ(x) ∂−μφ(x) + ∂μφ(x)2 (168)

But ∂−μφ(x) = −∂μφ(x − eμ) and ∂μφ(x − eμ) − ∂μφ(x) = −(∂−μ∂μφ)(x) so this is

L4K(U) = −α

8

∑
μ

∑
x∈U

(∂−μ∂μφ)(x)∂μφ(x) (169)

The proof now proceeds as in Lemma 3 but now on scale j + 1. Instead of (87) we have

|∂μφ(x)| ≤ hL−d(j+1)/2‖φ‖�j+1(U∗)
(170)|∂−μ∂μφ(x)| ≤ hL−d(j+1)/2L−(j+1)‖φ‖�j+1(U∗)

The factor L−d(j+1) compensates the sum over x ∈ U and taking L−(j+1) ≤ L−1 one obtains
for the strong norm and hence the weak norm

‖L4K(U)‖j+1 ≤ O(L−1)h2|α| (171)

However |α| ≤ O(1)h−2A−1‖K‖j by Lemma 7 which yields ‖L4K‖j+1 ≤ O(L−1)‖K‖j . �
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Lemma 11 Let L be sufficiently large. Then the operator � is a contraction with arbitrarily
small norm.

Proof By Lemma 3

‖�K(U)‖j+1 = ‖V (0, α̃,U)‖j+1 ≤ h2‖α̃‖j+1 = h2 sup
U∈Bj+1

L−(j+1)d‖α̃‖1,U (172)

But α̃(x) = 0 if x ∈ B and B∗ is away from the boundary. Hence it vanishes if d(x, ∂�N) >

2dLj and so

‖α̃‖1,U ≤ O(1)|α|
∣∣∣{x ∈ U : d(x, ∂�N) ≤ 2dLj }

∣∣∣ ≤ O(L(j+1)(d−1)Lj )|α| (173)

Combining these with |α| ≤ O(1)h−2A−1‖K‖j we obtain ‖�K(U)‖j+1 ≤ O(L−1)A−1‖K‖j

and hence ‖�K‖j+1 ≤ O(L−1)‖K‖j . �

4.5

We now choose Ẽ(B), σ̃ so the V terms in (167) cancel. First note that

V #(E,σ,B,φ) = E(B) +
∫

σ

4

∑
x∈B

∑
μ

(∂μφ(x) + ∂μζ(x))2dμ�j+1(ζ )

= E(B) + σ

4

∑
x∈B

∑
μ

∂μφ(x)2 + σ

4

∑
x∈B

∑
μ

(∂μ�j+1∂
∗
μ)(x, x)

≡ V (E,σ,B,φ) + σ

4

∑
μ

Tr(1B∂μ�j+1∂
∗
μ) (174)

Thus the constant terms cancel if we define Ẽ = Ẽ(E,σ,K) by

Ẽ(B) = E(B) + σ

4

∑
μ

Tr(1B∂μ�j+1∂
∗
μ) + β(K,B) (175)

The second order terms vanish if we define σ̃ = σ̃ (σ,K) by

σ̃ = σ + α(K) (176)

Note that we are canceling the constant term exactly for all B , but for the quadratic term we
are only canceling exactly the invariant version away from the boundary.

By composing K ′ = K ′(Ẽ, σ̃ ,E,σ,K) with Ẽ = Ẽ(E,σ,K) and σ̃ = σ̃ (σ,K) we ob-
tain a new map K ′ = K ′(E,σ,K). We also have new quantities E′(E,σ,K) defined by
E′(B ′) = ∑

B⊂B ′ Ẽ(B) and σ ′ = σ ′(σ,K) defined by σ ′ = σ̃ = σ + α(K). These quantities
satisfy (cf. (104))

μ�j+1 ∗ (
I (E,σ ) ◦ K

)
(�) = (

I ′(E′, σ ′) ◦ K ′)(�) (177)

We continue to assume that L is sufficiently large, and that A is sufficiently large de-
pending on L.
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Theorem 5

1. For R > 0 there is a r > 0 such that the following holds for all j. If ‖E‖j , |σ |,
‖K‖j < r then ‖E′‖j+1, |σ ′|,‖K ′‖j+1 < R. Furthermore E′,K ′, σ ′ are smooth func-
tions of E,σ,K on this domain with derivatives bounded uniformly in j .

2. The linearization of K ′ = K ′(E,σ,K) at the origin is the contraction LK where

L = L1 + L2 + L′
3 + L4 + � (178)

Proof For the first part it suffices to show that the linear maps Ẽ = Ẽ(E,σ,K) and
σ̃ = σ̃ (σ,K) have norms bounded uniformly in j . The bound on σ̃ follows from |α(K)| ≤
O(1)h−2A−1‖K‖j from Lemma 7. The bound on Ẽ follows from the bound on ‖β(K)‖j ≤
O(1)A−1‖K‖j from Lemma 7 and the estimate (42) which gives for B ∈ Bj

∣∣∣∣σ4
∑

μ

Tr(1B(∂μ�j∂
∗
μ))

∣∣∣∣ ≤ O(1)|σ |
∑
x∈B

L−dj ≤ O(1)|σ | (179)

Together they imply that Ẽ = Ẽ(E,σ,K) satisfies

‖Ẽ‖j ≤ ‖E‖j + O(1)(|σ | + A−1‖K‖j ) (180)

The second part follows since the linearization of the new function K ′ is the linearization
of the old function K ′ composed with Ẽ = Ẽ(E,σ,K), σ̃ = σ̃ (σ,K). (All vanish at zero.)
This effects the cancellation and leaves us with LK . �

4.6

It is convenient to decouple the energy from the other variables. Suppose we start with
E(B) = 0 in (177). Then

μ�j+1 ∗ (
I (0, σ ) ◦ K

)
(�N) = (

I ′(E′, σ ′) ◦ K ′)(�) (181)

where σ ′ = σ ′(σ,K) and K ′ = K ′(0, σ,K) and E′ = E′(0, σ,K). Next remove the E′ mak-
ing an adjustment in K ′. We relabel everything with a plus and write

μ�j+1 ∗ (
I (0, σ ) ◦ K

)
(�N) = exp

( ∑
B ′∈Bj+1(�N )

E+(B ′)
)(

I ′(0, σ+) ◦ K+)
(�N) (182)

where

E+(σ,K,B ′) ≡ E′(0, σ,K,B ′) =
∑
B⊂B ′

Ẽ(0, σ,K,B) B ′ ∈ Bj+1

σ+(σ,K) ≡ σ ′(σ,K) = σ + α(K) (183)

K+(σ,K,U) ≡ exp

(
−

∑
B ′⊂U

E+(B ′)
)

K ′(0, σ,K,U) U ∈ Pj+1

The dynamical variables are now σ+(σ,K) and K+(σ,K). The energy E+(σ,K) is driven
by the other variables. Since everything vanishes at the origin the linearization of K+(σ,K)

is still LK . The bound (180) on Ẽ gives a bound on E+ and our main theorem becomes:
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Theorem 6

1. For R > 0 there is a r > 0 such that the following holds for all j. If |σ |,‖K‖j < r then
|σ+|,‖K+‖j+1 < R. Furthermore σ+,K+ are smooth functions of σ,K on this domain
with derivatives bounded uniformly in j .

2. The extracted energies satisfy

‖E+(σ,K)‖j+1 ≤ O(Ld)
(|σ | + A−1‖K‖j

)
(184)

3. The linearization of K+ at the origin is the contraction L.

5 The Stable Manifold

Now we establish the existence of a stable manifold for the flow. For now we do not spe-
cialize to the dipole gas, but take a general initial point σ0,K0 corresponding to an integral∫
(I (0, σ0) ◦ K0)(�N)dμC0 .

We assume K0(X,φ) has the lattice symmetries and satisfies the conditions (61). We also
assume |σ0|,‖K0‖0 < r where r is small enough so the last theorem holds, say with R = 1,
and we can take the first step. We apply the transformation (182) for j = 0,1,2, . . . and
continue as long as we can. This generates a sequence σj ,K

N
j (X) by σj+1 = σ+(σj ,K

N
j )

and KN
j+1 = K+(σj ,K

N
j ) with extracted energies EN

j+1 = E+(σj ,K
N
j ). Then we have with

Ij (σj ) = Ij (0, σj ) for any k

∫
(I0(σ0)◦K0)(�N)dμC0 = exp

(
k∑

j=1

∑
B∈Bj (�N )

EN
j (B)

)∫
(Ik(σk)◦KN

k )(�N)dμCk
(185)

The quantities KN
j (X) and EN

j (B) are independent of N and have the lattice symmetries
if X,B are away from ∂�N in the sense that they have no boundary blocks. These properties
are true initially and are preserved by the iteration. In this case we denote these quantities
by just Kj(X) and Ej(B)

By our construction α defined in (143), (162) only depends on Kj and splitting K+ into
a linear and a higher order piece the sequence σj ,K

N
j (X) is generated by the RG transfor-

mation

σj+1 = σj + α(Kj )
(186)

KN
j+1 = L(KN

j ) + f (σj ,K
N
j )

This is regarded as a mapping from the Banach space R × Kj (�N) to the Banach space
R × Kj+1(�N). The function f = fj is smooth with derivatives bounded uniformly in j

and satisfies f (0,0) = 0, Df (0,0) = 0.
For this mapping we can use the stable manifold theorem proved in Brydges [2] to obtain:

Theorem 7 Let L be sufficiently large, A sufficiently large (depending on L), and r suf-
ficiently small (depending on L,A). Then there is 0 < ρ < r and a smooth real-valued
function σ0 = h(K0), h(0) = 0, mapping ‖K0‖0 < ρ into |σ0| < r such that with these start
values the sequence σj ,K

N
j is defined for all 0 ≤ j ≤ N and

|σj | ≤ r2−j ‖KN
j ‖j ≤ r2−j (187)
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Furthermore the extracted energies satisfy

‖EN
j+1‖j+1 ≤ O(Ld)r2−j (188)

Proof We first establish the theorem for the invariant quantities Kj(X),Ej (B) away from
the boundary. In this case the RG transformation (186) can be regarded as a map from the
Banach space R × Kj (Z

d) to the Banach space R × Kj+1(Z
d), since any X ∈ Pj,c(Z

d) is
well inside �N for N sufficiently large. On this space the transformation can be iterated
indefinitely. Furthermore L has the form L = L′ + � where L′ = L1 + L2 + L′

3 + L4 and
where � vanishes away from the boundary. Thus the RG transformation on the invariant
quantities is

σj+1 = σj + α(Kj )
(189)

Kj+1 = L′(Kj ) + f (σj ,Kj )

Both L′, α are contractions with arbitrarily small norm for A,L large. Then we can ap-
ply the stable manifold theorem from [2], Theorem 2.16 with parameters μ = 1/2 and
α = 1. This yields the function σ0 = h(K0) and with these initial values the sequence σj ,Kj

satisfies (189) with the bounds (187).
Once we know that σj is not growing we can give a direct proof that ‖KN

j ‖j satisfies
the bound (187) reproducing the results for Kj but now including the boundary polymers.
The bound is true initially since KN

0 (X) = K0(X) even if X touches the boundary. Suppose
it is true for j . We have KN

j+1 = L(KN
j ) + f (σj ,K

N
j ) where L is a contraction with norm

less than 1/4 and f (σj ,K
N
j ) is second order. Hence for some constant M and r sufficiently

small

‖KN
j+1‖j+1 ≤ 1

4
‖KN

j ‖j + M
(|σj |2 + ‖KN

j ‖2
j

)

≤ 1

4

(
r2−j

) + 2M
(
r2−j

)2

≤ r2−j−1 (190)

which is the bound for j + 1.
Finally the energy bound (188) comes from the bounds on σj ,K

N
j and (184). �

6 The Dipole Gas

6.1 The Initial Density

We now specialize to the dipole gas and complete the proof of the theorem. The first issue
is to adjust the dipole gas density so it becomes a point on the stable manifold.

For the dipole gas the initial density Z N
0 = Z N

0 (z, σ ) is given in (49). We break it into

pieces defining for B ∈ B0, W0(B) = zW(
√

1 + σ0,B) as in (92) and V0(B) = σ0V (B) as
in (60). Then we follow with a Mayer expansion to put the density in the form we want.

Z N
0 =

∏
B⊂�N

eW0(B)−V0(B) =
∏

B⊂�N

(
e−V0(B) + (eW0(B) − 1)e−V0(B)

)

=
∑

X⊂�N

I0(σ0,�N − X)K0(X) = (I0(σ0) ◦ K0)(�N) (191)
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where I0(σ0,B) = e−V0(B) and K0(X) = K0(z, σ0,X) is given by

K0(X) =
∏
B⊂X

(eW0(B) − 1)e−V0(B) (192)

Note that K0 has the lattice symmetries and satisfies the conditions (61). To start the flow
we need:

Lemma 12 Given r > 0 if |z| and |σ0|, are sufficiently small then ‖K0(z, σ0)‖0 ≤ r . Fur-
thermore K0 is a smooth function of (z, σ0).

Proof Consider the G = 1 norm ‖ · ‖00 defined in (101). As in (102) we have

‖eW0(B) − 1‖00 ≤ exp
(

2|z|eh
√

d(1+σ0)
)

− 1 ≤ c|z| (193)

for some constant c. Also by Lemma 3 ‖e−V0(B)‖s,0 ≤ 2. Combining these

‖(eW0(B) − 1)e−V0(B)‖s,0 ≤ ‖eW0(B) − 1‖00‖e−V0(B)‖s,0 ≤ 2c|z| (194)

Then

‖K0(X)‖s,0 ≤
∏
B⊂X

‖(eW0(B) − 1)e−V0(B)‖s,0 ≤ (2c|z|)|X|0 (195)

Then same follows for the weak norm ‖K0(X)‖0 and so

‖K0‖0 = sup
X∈P0,c

‖K0(X)‖0A
|X|0 ≤ sup

X

(2c|z|A)|X|0 ≤ 2c|z|A < r (196)

The smoothness follows similarly from Lemmas 3 and 4. For example consider the part
of K0 depending on W which is

K ′
0(X) =

∏
B⊂X

(eW0(B) − 1) (197)

We show that the derivative with respect to σ0 has a finite norm. The derivative is computed
as

∂K ′
0(X)

∂σ0
=

∑
B0⊂X

zW ′(
√

1 + σ0,B)
1

2
√

1 + σ0

∏
B⊂X−B0

(eW0(B) − 1) (198)

Then by (98) and (193) we have for some constant c′
∥∥∥∥∂K ′

0(X)

∂σ0

∥∥∥∥
s,0

≤
∑

B0⊂X

|z|‖W ′(
√

1 + σ0,B)‖s,0

∏
B⊂X−B0

‖eW0(B) − 1‖00 ≤ (c′|z|)|X|0 (199)

and so ∥∥∥∥∂K ′
0

∂σ0

∥∥∥∥
0

≤ Ac′|z| (200)

The other pieces may be treated similarly.5 This completes the proof. �

5For ∂K0/∂σ0 we must combine the estimate (199) with estimates ‖e−V0(B)‖s,0 ≤ 2. For this use

G2
s,0 ≤ G0.
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To apply Theorem 7 we need to choose σ0 so that σ0 = h(K0(z, σ0)).

Lemma 13 The equation σ = h(K0(z, σ )) defines a smooth implicit function σ = σ(z) near
the origin which satisfies σ(0) = 0.

Proof Let f (z, σ ) = σ − h(K0(z, σ )). Then f (0,0) = 0. The function h is smooth by The-
orem 7 and the function K0 is smooth by Lemma 12. Hence f is smooth and we compute

fσ (0,0) = 1 − Dh(0; (K0)σ (0,0)) (201)

But K0(0, σ ) = 0, hence (K0)σ (0,0) = 0 and hence fσ (0,0) = 1 �= 0. By the implicit func-
tion theorem there exists σ = σ(z) so that f (z, σ (z)) = 0. This completes the proof. �

Taking |z| sufficiently small and making the choice σ0 = σ(z) the start density I0(σ (z))◦
K0(z, σ (z)) is now tuned and we can apply Theorem 7. We have for 0 ≤ k ≤ N

Z′
N(z, σ (z)) =

∫ (
I0(σ (z)) ◦ K0(z, σ (z))

)
(�N)dμC0

= exp

(
k∑

j=1

∑
B∈Bj (�N )

EN
j (B)

)∫
(Ik(σk) ◦ KN

k )(�N)dμCk
(202)

where |σj | ≤ r2−j and ‖KN
j ‖j ≤ r2−j and ‖EN

j+1‖j+1 ≤ O(Ld)r2−j .

6.2 The Pressure

Now we can show the pressure has an infinite volume limit, completing the proof of Theo-
rem 1.

Theorem 8 For |z| sufficiently small the following limit exists:

lim
N→∞

|�N |−1 logZ′
N(z, σ (z)) (203)

Proof Take k = N in (202). At this level there is only one block �N ∈ BN(�N) and so

|�N |−1 logZ′
N(z, σ (z)) = |�N |−1

N∑
j=1

∑
B∈Bj (�N )

EN
j (B)

+ |�N |−1 log

(∫ [
IN(σN,�N) + KN

N (�N)
]
dμCN

)
(204)

The second term has the form

|�N |−1 log

(
1 +

∫
FNdμCN

)
(205)

where

F(�N) = IN(σN,�N) − 1 + KN
N (�N) (206)
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By (126) and (74)

‖IN(σN,�N) − 1‖N ≤ O(1)h2|σN | ≤ O(1)h2r2−N (207)

and

‖KN
N (�N)‖N ≤ A−1‖KN

N ‖N ≤ A−1r2−N (208)

so that ‖F(�N)‖N is O(2−N) as N → ∞.
In a following lemma we prove that for h sufficiently large

∫
GN(�N,0, ζ )dμCN

(ζ ) ≤ 2.
Then we estimate

∣∣∣∣
∫

FN(�N)dμCN

∣∣∣∣ ≤ ‖F(�N)‖N

∫
GN(�N,0, ζ )dμCN

(ζ ) ≤ 2‖F(�N)‖N = O(2−N)

(209)
Hence the expression (205) is O(2−N)|�N |−1 and goes to zero very quickly as N → ∞.

Now we consider the first term in (204). If we replace EN
j (B) by the invariant quantity

Ej(B) we have

|�N |−1
N∑

j=1

∑
B∈Bj (�N )

Ej (B) = L−dN

N∑
j=1

Ld(N−j)Ej (B) =
N∑

j=1

L−djEj (B) (210)

Since |Ej(B)| = O(2−j ) this converges to the infinite sum as N → ∞.
Now we are left with

|�N |−1
N∑

j=1

∑
B∈Bj (�N )

(EN
j (B) − Ej(B)) (211)

Since EN
j (B) − Ej(B) vanishes away from the boundary the term is bounded by a constant

times

|�N |−1
N∑

j=1

∑
B∈Bj (∂�N )

2−j ≤ O(1)L−dN

N∑
j=1

L(d−1)(N−j)2−j

≤ O(1)L−N

N∑
j=1

L−(d−1)j 2−j = O(L−N) (212)

where Bj (∂�N) are the boundary blocks in Bj (�N). Hence this goes to zero as N → ∞ to
complete the proof, except for the next lemma. �

Lemma 14 For h sufficiently large
∫

GN(�N,0, ζ )dμCN
(ζ ) ≤ 2 (213)

Remark The proof is similar to the bound on
∫

Gj(X,0, ζ )dμ�j
given in [2], (6.53). How-

ever

CN(x − y) =
∞∑

j=N+1

�j(x − y) (214)
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has infinite range and so we must approach things a little differently. Note that CN does
satisfy essentially the same bound as �N+1 namely

|∂αCN(x)| ≤ 2cαL
−(d−2+|α|)N (215)

Proof As noted in [2], Lemma 6.31, after a Sobolev inequality and a Holder inequality it
suffices to show that for fixed a and any multi-index α that

∫
exp

(
ah−2L(2|α|−2)N

∑
x∈�∗

N

|(∂αζ )(x)|2
)

dμCN
(ζ ) ≤ exp(O(h−2)) (216)

With

A = 2ah−2L(2|α|−2)N C
1/2
N (∂α)∗1�∗

N
∂αC

1/2
N (217)

The integral is computed as

∫
exp

(
1

2
(ζ,Aζ)

)
dμI (ζ ) = det(1 + A)−1/2 (218)

provided A is trace class. But by (215) and |�∗
N | ≤ O(1)|�N | we have for some constant k

tr(A) = 2ah−2L(2|α|−2)N tr(1�∗
N
∂αCN(∂α)∗)

= 2ah−2L(2|α|−2)N
∑

x⊂�∗
N

(−1)|α|(∂2αCN)(0)

≤ 4ah−2c2α

∑
x⊂�∗

N

L−dN ≤ kh−2 (219)

Then also ‖A‖ ≤ kh−2 and so tr(An) ≤ ‖A‖1‖A‖n−1 ≤ knh−2n. Now as in (21) we have

det(1 + A)−1/2 = exp

(
1

2

∞∑
n=1

(−1)n

n
tr(An)

)
≤ exp

( ∞∑
n=1

knh−2n

)
≤ exp(O(h−2)) (220)

This completes the proof. �

Appendix A: Degenerate Gaussian Measures

In the text we use degenerate Gaussian measures. Here we give a precise definition.
Let � be a bounded symmetric operator on real-valued �2(Zd) that is positive in the sense

that

(f,�f ) =
∑

x,y∈Zd

f (x)�(x, y)f (y) ≥ 0 (221)

but only semi-definite because we allow the possibility that (f,�f ) = 0 for some f �= 0.
We want to consider a Gaussian process with covariance �. Since it is only semi-definite

this is not quite standard. A convenient way to proceed is to let Z(x) be a Gaussian process
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indexed by x ∈ Z
d with identity covariance, i.e. Z(x) are independent normal random vari-

ables. Let (M,μ) be the underlying measure space. Let �1/2(x, y) = (δx,�
1/2δy) be the

kernel of �1/2 and define φ = �1/2Z by

φ(x) =
∑

y

�1/2(x, y)Z(y) (222)

This sum converges in the L2(M,μ) since

∑
y

|�1/2(x, y)|2 = �(x, x) < ∞ (223)

Expectations are integrals
∫ [· · · ]dμ and we use the notation

∫
F(φ) dμ�(φ) ≡

∫
F(�1/2Z) dμ(Z) (224)

when the integral exists. In particular if φ(f ) = ∑
x φ(x)f (x) with f ∈ �2(Zd) we have the

characteristic function
∫

exp(iφ(f ))dμ�(φ) =
∫

exp(iZ(�1/2f ))dμ(Z)

= exp

(
−1

2
‖�1/2f ‖2

)

= exp

(
−1

2
(f,�f )

)
(225)

which verifies that φ is a Gaussian process with covariance �.
If φ1 = �

1/2
1 Z1 is Gaussian with covariance �1 on (M1,μ1) and φ2 = �

1/2
2 Z2 is Gaussian

with covariance �2 on (M2,μ2), then φ1 + φ2 on the product space (M1 × M2,μ1 × μ2)

gives a realization of a Gaussian process with covariance � = �1 + �2. This works because
the characteristic function is

∫
exp

(
i(φ1(f ) + φ2(f ))

)
dμ�1(φ1)dμ�2(φ2)

= exp

(
−1

2
(f,�1f )

)
exp

(
−1

2
(f,�2f )

)

= exp

(
−1

2
(f,�f )

)
(226)
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